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A B S T R A C T   

Buying land to establish protected areas is a common conservation strategy, particularly in countries with strong 
private property rights. Accurately accounting for spatial heterogeneity in land cost could lead to large efficiency 
savings when planning future acquisitions. However, lack of data regarding actual acquisition costs faced by 
conservation organizations has led planners to rely on more readily available proxies, such as agricultural land 
value. Using data on nearly 36,000 parcels acquired for conservation by public agencies and land trusts in the 
continental U.S., we built a model predicting protected area acquisition costs. While costs of land for agriculture 
or development are useful predictors of variation in protected area acquisition costs, they are not, by themselves, 
good approximations of those costs. For example, using a more comprehensive combination of variables, our 
model explained almost four times as much variation in actual acquisition costs as those. We found that agri-
cultural land value loses most of its explanatory power once other predictors are used, confirming that it acts as a 
partial proxy for actual acquisition costs. We then used an optimization model to compare prioritization rec-
ommendations with our new cost estimates to those suggested when relying on agricultural land values alone. 
Locations of highest conservation return on investment shifted from coastal regions toward the country’s center, 
when using actual cost data. Cost estimates used in conservation planning should be based on actual protected 
area acquisitions, because the type of properties and motivations of buyers and sellers differ from those of other 
land transactions.   

1. Introduction 

Protected areas have long been a primary strategy for conservation, 
especially in terrestrial systems (Haaland et al., 2021; Le Saout et al., 
2013; Margules and Pressey, 2000; Watson et al., 2014). In the face of 
continued biodiversity erosion and limited funding (Lerner et al., 2007; 
McCarthy et al., 2012), conservation organizations have adopted sys-
tematic approaches to identify parcels for protection, relying on stra-
tegic work-flows to organize planning efforts and optimization tools 
when appropriate (Amundsen, 2011; McIntosh et al., 2017). Many of 
these methods aim to maximize the ecological return on investment 
(ROI) when selecting a set of areas to acquire (Moilanen et al., 2009). 
Conservation ROI has been defined in various ways, but most definitions 
are based around the ratio of the ecological benefit of a conservation 
action divided by the economic cost of the action (Boyd et al., 2015). 
When conservation costs were first included in large-scale planning 
studies, large efficiency savings were reported, suggesting more biodi-
versity could be protected for a given budget (Ando et al., 1998; 

Carwardine et al., 2008; Naidoo and Iwamura, 2007; Venter et al., 
2014). ROI approaches, notably, promise large efficiency gains provided 
they can rely on reasonable estimates for both ecological benefits and 
economic costs of protection (Cullen, 2013). 

In countries with strong private property rights, expansion of pro-
tected area networks often depends on buying or receiving donations of 
land from private landowners (Nolte, 2018). When purchases are 
involved, the cost of upfront land acquisition is a significant component 
of the overall cost of securing long-term conservation goals on a site (Le 
Bouille et al., 2022). Unfortunately, reliable data on the costs of pro-
tecting land are rarely available (Armsworth, 2014). Instead, many 
conservation studies rely on indicators of protected area acquisition 
costs, such as costs estimated from agricultural rental rates nearby 
(Lawler et al., 2020; Venter et al., 2014; Withey et al., 2012), gross 
margins of agricultural production (Adams et al., 2010; Chiozza et al., 
2010; Jantke et al., 2013; Jantke and Schneider, 2011), population 
density nearby (Luck et al., 2004) or even GDP per capita (Eklund et al., 
2011). However, protected parcels commonly include steeper terrain 
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and higher elevation habitats than most agricultural lands (Sutton et al., 
2016). In addition, dynamics associated with conservation transactions, 
such as motivations to buy and to sell between conservation organiza-
tions and existing private landowners, can be very different from those 
involved in conventional land sales (Armsworth, 2014; Clark, 2007; 
Knight et al., 2011). 

Improving the accuracy of cost data promises further efficiency gains 
by avoiding costly misallocations of limited resources (Armsworth et al., 
2020; Sutton et al., 2016). Indeed, priorities that emerge in conservation 
planning may be more sensitive to the cost data used than to particular 
biodiversity data (Kujala et al., 2018). Improved cost estimation is also 
necessary if we are to more accurately project what it will cost to deliver 
particular conservation objectives (Nolte, 2020). Improved data on land 
costs in the U.S. are becoming more readily available. For example, 
Nolte (2020) and Wentland et al. (2020) present new predictive models 
estimating the fair market value of individual land transactions from 
data collated by Zillow, a commercial real estate database company. 
However, for the reasons we mentioned above, land value for conser-
vation may not reflect the full cost that would be faced by a commercial 
developer or other private purchaser. Instead, conservation organiza-
tions are often able to acquire land for less than fair market value, by 
way of a form of charitable donation on the part of sellers. With their 
focus on fair market value, Nolte (2020) and Wentland et al. (2020) used 
a different sample of transactions than we did. For example, Nolte val-
idates his model against some of the same data we use here, but 
retaining only parcels sold at or close to (no more than 20 % discount) 
the estimated land’s fair market value. In contrast, we focus on exploring 
variation in the actual acquisition costs faced by conservation organi-
zations when protecting a property, not in the commercial real estate 
value of that land. For this reason, we use records of actual prices paid, 
including the portion of acquisition costs attributable to landowners 
selling to conservation organizations for below fair market value, i.e. 
land discounted or donated. 

In this study, we sought to understand large-scale patterns in the 
costs of acquiring land to establish new protected areas (also often 
referred to as “fee simple acquisition”). We used statistical regression to 
relate the patterns we found to socioeconomic, geographical and 
ecological covariates. The resulting model produced a national map of 
protected area acquisition costs. We also compared our cost estimates to 
estimates of agricultural land value and urban land value used in past 
studies. Finally, we show how prioritizations for future protection 
change when relying on our new conservation cost estimates. 

2. Material and methods 

2.1. Acquisition cost data 

We used data on 35,880 land transactions made to protect land in the 
continental U.S. These data include 31,332 land transactions made by 
local, state and federal governments across the U.S. that were collated by 
the Trust for Public Land (TPL) in their Conservation Almanac (The 
Trust for Public Land, 2019). Exact dates vary by states, but most states’ 
records start in the 90’s, with around one third starting in the 80’s. The 
most recent records for most states are from 2014 or 2013. The data also 
include 4,548 additional land transactions made between 1980 and 
2014 by The Nature Conservancy, the largest private land trust in the U. 
S. (Carr, 2006), which is another major contributor to expansions of the 
U.S. protected area network (Fishburn et al., 2013; LTA, 2015). We 
corrected the costs for inflation and reported them as 2016-dollars, using 
the Consumer Price Index (U.S. Bureau of Labor Statistics, 2019). 
Because we want to explore costs of acquiring land for protection as 
actually faced by conservation organizations, we retained sites that were 
fully or partially donated in our main analyses, but see below for rele-
vant sensitivity tests. 

We focus our analysis on the average cost per hectare of purchasing 
land for protected areas within a county. While recognizing other 

choices would also make sense, we chose to work at the county level for 
several reasons. First, based on conversations with practitioners, we 
believe counties provide a relevant spatial grain when deciding how to 
allocate conservation dollars and working over a large spatial extent. 
Organizations and government programs that conduct conservation 
planning to inform protection strategies over large spatial scales tend to 
leave the final decisions over just which parcels should be acquired to 
staff in local field offices — while the large-scale budget planning itself, 
deciding which parts of the country should be priorities for future in-
vestment, is conducted at coarser spatial units such as counties. Second, 
counties are a relevant administrative and political unit in the U.S. for 
regional and local land-use planning. Third, several of our chosen socio- 
economic variables are available only at county-level. Finally, and partly 
for these other reasons, county-grain is also a scale at which many return 
on investment (ROI) based optimizations have previously been formu-
lated, making it easier to compare our results with existing literature 
(Ando et al., 1998; Armsworth et al., 2020; Boyd et al., 2015; Dobson 
et al., 1997; Kroetz et al., 2014; Withey et al., 2012). That being said, 
county sizes vary across the U.S. In case that would affect any of the 
above, we included county area as one of our model’s predictive vari-
ables. We used county boundaries as recorded by the U.S. Census Bureau 
(2015). The transactions in our dataset span 1927 counties, 63 % of the 
total number of counties in the continental U.S (Fig. 1). 

2.2. Covariates 

The model we fit to explain variation in protected area acquisition 
costs included both ecological and socioeconomic covariates (Table 1). 
The choice of variables was based on hypotheses about factors that 
might explain cost variation. We first included measures of the value of 
alternative land uses, both agricultural land value (USDA-NASS 2012) 
and urban land value (Davis et al., 2021), because acquisition cost is 
likely to reflect the foregone value (opportunity cost) incurred when 
protecting land. For counties where these estimates were unavailable, 
we used the state average for the relevant variable. 

The amount paid by a conservation organization to acquire a prop-
erty also depends on the willingness of the landowner to sell below 
market value as a form of philanthropic donation to conservation (Clark, 
2007). Unfortunately, most conservation organizations do not record 
fair market value at the time of a land purchase (~87 % of the data we 
used in this analysis did not retain that information) making it difficult 
to quantify the prevalence and magnitude of partial donations. So, while 
one could estimate donation rates separately from fair market value and 
afterwards combine the two estimates to arrive at an overall estimate of 
conservation costs, we opt for the simpler approach of combining both 
processes within a single estimation. Others have found environmental 
philanthropy in the form of monetary donations to be associated with 
higher household incomes (Mount, 1996), higher levels of education 
(Greenspan et al., 2012), higher employment rates, urban living (Chen 
et al., 2011) and more prevalent left-leaning political beliefs (Fovargue 
et al., 2019). As such, we included poverty percentage (United States 
Census Bureau, 2021), education levels, as the percentage of adults with 
a bachelor’s degree or more (United States Census Bureau, 2021), un-
employment rate and population density (Friesenhahn, 2016), and 
democratic leaning, as the average proportion of votes for that party 
during presidential elections, since 2000 (MIT Election Data and Science 
Lab, 2018) as possible predictors of land donations. 

We accounted for the proportion of the county already covered by 
protected areas with explicit mandates for biodiversity protection, using 
data from the Protected Area Database of the United States — GAP 
categories 1, 2 and 3 (USGS Gap Analysis Project, 2018). We also 
included the proportion of the county that had already been converted 
to either urban land, crop or pasture, as well as the proportion that is 
projected to be converted to these land cover types by 2030. We took 
these proportions from U.S. Forest Service’s 2010 RPA assessment 
(Wear, 2011). We converted the later into an indicator of short-term 
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conversion threat by calculating the ratio of additional converted area to 
the current total converted area within the county. We also obtained the 
mean elevation (NASA-JPL, 2013) for each county. Finally, we calcu-
lated how many vertebrate species that were evaluated by IUCN (2016) 
as being vulnerable to extinction or worse were present in the county. 

Recognizing that there may be broad spatial patterns not accounted 
for by these variables, we also included categorical variables summari-
zing whether counties were located in particular parts of the country. 
We used ecoregional boundaries associated with broad biophysical at-
tributes when specifying these categorical variables. Specifically, we 
included categorical variables describing whether a given county was 
included in one of 85 EPA-3 ecoregions (U.S. Environmental Protection 
Agency, 2015), which are mapped in Fig. S.I.-1. We tested two alter-
native specifications for categorical variables that focused on larger 
regions. For these, we used state boundaries and 8 EPA-1 ecoregions, but 
these more aggregated descriptors were not retained by our fitting 
procedure (S.I. Section I). 

2.3. Analyses 

We used a regression approach to examine covariation between our 
socioeconomic and ecological variables and our acquisition cost data. 
We started with a simple linear regression model, weighted by the 
number of transactions in each county. The analysis was conducted in R 
(R Core Team, 2018), with packages MuMIn (Bartón, 2023), lmerTest 
(Kuznetsova et al., 2017), ape (Paradis and Schliep, 2019) and DMwR 
(Torgo, 2016). The average cost per hectare of buying land for conser-
vation per county was log-transformed with an offset of 1 to reduce 
skewness while accounting for zeroes in the data. For the same reason as 

well as for consistency, we also log-transformed the average urban and 
agricultural land values per hectare for each county. Our basic model 
structure was: 

Y = α+
∑

i
βi*Xi + ε  

where Y is the acquisition cost of a protected area of land and βi are the 
coefficients to be estimated for each Xi covariate described above, α is 
the intercept and ε is the error term. When generating a proximity ma-
trix with all pairwise distances between counties and applying a Moran’s 
test to the residuals weighted by those distances, some spatial auto- 
correlation in the error terms was found. The model fit was signifi-
cantly improved, based on AIC comparison as well as thorough model 
validation (see S.I. section II for more model validation details), by 
retaining EPA-3 ecoregions but some spatial autocorrelation still 
remained. We then tried explicitly adjusting the model’s error structure. 
We fitted the model once more, using generalized least squares, and 
compared the fits obtained when assuming five different autocorrelation 
structures (S.I. section I). While improving the model’s AIC, they did not 
significantly decrease the remaining autocorrelation in the residuals. 
The covariate estimates were very similar across all model structures, 
which points to functional form of our model as being robust and 
correctly specified. Therefore, we proceeded with the base model, 
without a spatially autocorrelated error structure. 

We tested the robustness of the resulting fitted model in both time 
and space. We subjected our model to both an out of sample cross- 
validation routine (repeated k-fold with 100 repeats of 10-fold 
random sets — Kohavi, 1995) and an in-sample validation check by 
fitting predicted values against observed values across our whole dataset 

Fig. 1. Number of land parcels bought for protection, since 1980, in our dataset. 
Records for the Great Plains region are scarce, with many counties containing <5 land deals (grey), while the Lake region and both coasts are more densely rep-
resented (color scale). 
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(Fig. 2a). Additionally, we repeated our model fitting when only using 
transactions from the most recent decade included in the dataset. We 
also checked for other possible temporal trends by calculating the dif-
ference between individual parcel cost and county land cost average and 
then testing for significant changes in this quantity through time; there 
was no significant trend in the spread of data points around the county 
averages over time (ANOVA, P-value = 0.458). Finally, some parcels 
within our dataset (15 %) were fully donated by the original landowner, 
meaning the cost per hectare was USD$0. To examine whether our re-
sults were sensitive to their inclusion, we repeated our analyses omitting 
these fully donated transactions. In all cases, spatial and temporal, in 
and out of sample, with and without donations, parameters estimates 
and predictions of our model remained largely consistent (S.I. section 
III). 

2.4. ROI prioritization 

To illustrate how conservation recommendations would change 
when drawing on our new cost estimates, we used a spatial prioritization 
approach to identify future priority locations for establishing protected 
areas. Specifically, we used the prioritization model presented in 
Armsworth et al. (2020) that focuses on enhancing the protection of 
1514 terrestrial vertebrate species (birds, mammals, reptiles and am-
phibians). This formulation accounts for ecological complementarity in 
the set of species being protected, conservation costs, existing protected 
areas, projected habitat conversion threats, contributions to species 
protection from unprotected private land, and a range of other factors. 
The conservation objective is assumed to be one of maximizing expected 
future species richness when considering the probability of a species 
persisting to be a function of the amount of protected area and uncon-
verted private land found within the species range. Conservation funds 
allocated to a county are used to acquire new protected areas, thus 
changing future land cover and species persistence probabilities. 
Armsworth et al. (2020) compare different assumptions regarding sub-
county siting of protected areas relative to species ranges. Here we adopt 
their “pessimistic” scenario where each hectare of additional protected 
area covers species ranges in proportion to their range area in the 
county. This prioritization approach and its assumptions are explored 
fully in that earlier Armsworth et al. (2020) paper. Here we focus on 
applying it as a demonstration of how the priorities one arrives at 
through a conservation planning process depend on the underlying cost 
data being used. 

We compared the ROI offered by investing in each county when 
using our new cost estimate with the ROI estimate obtained when using 
average agricultural land value in the county, a proxy commonly used in 
past studies. We defined the return on investment in terms of the change 
in the number of species expected to persist across the conterminous US 
when allocating a small additional budget for land protection to each 
county over status quo protection levels. The ROI available from 
investing in further land protection in county i takes the form:   

The summation in the numerator is taken across species, meaning 
counties with higher species richness tend to be higher priorities. The 
first term in the numerator represents the improvement possible in the 
future persistence probability for a species by improving conditions for it 
on the landscape by a small amount. While this term is positive for most 
species, the potential gains eventually dissipate for those common spe-
cies for which conditions are sufficiently favorable across the landscape 
that their persistence is assured. The second term in the numerator fo-
cuses on the county being targeted for investment and indicates by how 
much ecological conditions for the species in the future would be 
improved in that county by creating an additional hectare of protected 
area today. This term tends to be larger for counties where future con-
version threat would be higher, absent the additional protection and so 
the added value of new protected area is large. Finally, the denominator 
is just the cost per hectare in the county, which is the term we are most 
interested in here. All else being equal, lower cost counties have higher 

Table 1 
Definition and distribution (given as the 25 %, 50 % and 75 % quartiles) for 
variables used in our model.  

Acquisition cost Quartiles Description 

Cost per hectare 
(parcel) 

[1,923–8,649–35,522] Purchase price per hectare across 
parcels 

Cost per hectare 
(county) 

[2,853–7,353–28,828] Equal weight average of the purchase 
price for protected areas in a county 
(in dollar/ha)   

Covariates Quartiles Description 

County area [113k–162k–242k] County area, in ha 
Average deal size [22–50–128] Average area of protected areas 

bought in this county, in ha 
IUCN listed species [3–3–4] Number of vertebrate species listed 

as vulnerable or worse by IUCN 
Elevation [144–277–487] Mean county elevation, in meter 
Urban land value [94k–148k–234k] Urban land value, in dollar per 

hectare 
Agricultural land 

value 
[5k–7k–12k] Agricultural land value, in dollar 

per hectare 
Education [15–19–25] Percentage of 25+ year old adults 

with a bachelor’s degree or above 
Poverty [11–14–18] Percentage of people living below 

the poverty limit 
Unemployment 

Rate 
[5–7–8] Unemployment rate as percentage 

of the total population 
Population density [0.07–0.18–0.44] Density of population, per hectare 
Proportion land 

converted 
[0.19–0.38–0.64] Proportion of the county area that is 

either urban, crop or pasture 
Proportion land 

protected 
[0.009–0.036–0.137] Proportion of the county area 

protected under PAD-US cat. 1, 2 or 
3 

Future conversion 
threat 

[0.3–2.3–8.7] Percent increase of the converted 
area projected by 2030 

Democratic leaning [0.3–0.4–0.5] Proportion of total votes that were 
casted for the Democratic party 

Ecoregion NA (factor) EPA-3 ecoregion denomination  
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ROI values. 
To focus attention only on top priority counties that reside in the 

upper tail of the ROI distributions, we reported the percent agreement 
between the top 5, 10 and 15 % of counties when ranked by ROI when 
assuming each cost dataset. 

Finally, we pushed beyond ROI and calculated optimal budget allo-
cations when using each cost estimate. When optimizing, we treated the 
conservation budget allocated to a county as a continuous control var-
iable. We report the congruence in the optimized budgets, defined as the 
proportion of overall funding for which the two optimized strategies 
agree on the allocation. Additional details of our prioritization specifi-
cation are given in the S.I. The optimization indicates the optimal 
funding allocation when considering species complementarity, which 
sometimes involves focusing investment into a relatively small number 
of priority counties. In contrast, a focus on ROI more broadly allows a 
comparison of spatial patterns across the whole landscape. 

3. Results 

The total cost per parcel, the cost per hectare and parcel size were all 
heavily skewed (Table 1). In general, transactions included in the 
dataset were for small parcels; >87 % of the parcels acquired were 
smaller than 100 ha. The prevalence of small area transactions in the 
dataset is to be expected, both given our focus on the individual trans-
actions used to build protected areas and because, by number, most 
protected areas are small (Deguignet et al., 2014). There was also a great 
deal of spatial variability in the data. Even after averaging per county, 
cost per hectare and parcel size both varied by ~6 orders of magnitude 
across the U.S. (Table 1). 

Among our covariates, urban land value is a significant predictor of 
protected area acquisitions costs, while agricultural land value is not 
(Table 2). All other covariates are positively associated with protected 
area acquisition costs except for average deal size in the county, which is 
negatively correlated to acquisition costs, denoting economies of scale 

Fig. 2. Observed average county purchase costs against model predicted average county purchase costs (a), urban land value (b) or agricultural land value (c). In all 
cases, costs are log-transformed (base e) and red points are counties where all acquisitions were fully donated. Lines are each models’ fit (red) and y = x (orange). 
Intercepts are significantly different from 0 for regressions with urban (b) or agricultural (c) land values but is not for the regression observed against predicted 
estimates (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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that are still visible at county level. County size, poverty prevalence and 
political leaning do not have a significant (at P-value < 0.05) relation-
ship with acquisition costs. The direction of most of these associations 
aligned with our a priori expectations. We did not, however, anticipate 
the positive associations with elevation, which is likely attributable to us 
employing a multiple regression approach. i.e., the positive association 
with elevation here describes the relationship after controlling for the 
effects of broad ecoregion, county size, etc., rather than a simpler 
bivariate association between elevation and protected area acquisition 
costs. Semi partial R2 are one way of measuring effect size for parame-
ters in a linear model, by calculating the portion of residual variance 
explained by adding a given covariate to the full model specified without 
it. In this model, ecoregions, urban land value, population density, and 
unemployment are the covariates that explain the largest proportion of 
unique shared variance between the predictors and the response 

variable (Table 2). 
In our sensitivity test of the model fitting procedure, parameter es-

timates and predictions of our model remained consistent across our 
different spatial specifications and our in and out of sample validation 
checks (S.I. section III-A). When refitting the model using only trans-
actions from the most recent decade, the model estimates remained 
similar, though there was a slight loss in significance of some parameters 
as would be expected given the smaller sample sizes involved (S.I. sec-
tion III-B). We also included a sensitivity test where we re-estimated the 
model when dropping any transactions that were fully donated. Our 
findings are that the results remain largely unaffected by this change, 
except for county area, which became a significant factor (S.I. section III- 
C). 

While the value of both agricultural and urban land in a county might 
be expected to be a significant predictor of variation for protected area 

Table 2 
Estimated coefficients for the covariates used in the land value model to fit the log-transformed average purchase price per hectare, in 2016 U.S. dollars (n = 35,880). 
Covariates marked with ¤ were log-transformed, when fitting the model. R2 

= 0.59, significance levels are marked as follow: . at 0.1, * at 0.05, ** at 0.01 and *** at 
0.001.  

Covariates Value Std.error P-value Semi partial R2 (× E-03) 

(Intercept) 4.60 1.02 ***  0.24 
County area 5.12 E-08 7.79 E-08   5.04 
Average deal size -2.97 E-04 9.73 E-05 **  3.64 
IUCN listed species 3.79 E-02 1.47 E-02 **  9.75 
Elevation 9.07 E-04 2.14 E-04 ***  22.56 
Urban land value¤ 0.41 0.06 ***  0.93 
Agricultural land value¤ -0.10 0.08   4.40 
Education 1.63 E-02 0.57 E-02 **  0.19 
Democratic leaning -0.25 0.43   0.93 
Population density¤ 0.55 0.04 ***  76.90 
Poverty -2.27 E-02 1.16 E-02 .  2.09 
Unemployment rate 0.14 0.03 ***  12.31 
Proportion land converted¤ 1.37 0.40 ***  6.46 
Proportion land protected¤ 1.19 0.32 ***  7.36 
Development threat 0.41 0.16 **  3.68 
Ecoregions Factor Factor ***  213.96  

>25,000

15,000

5,000

<1,000

Fig. 3. Complete map of predicted acquisition costs (in dollars/ha) for all counties of the conterminous U.S. using parameter estimates from our model, presented 
in Table 2. 
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acquisition costs, our hypothesis was that relying on either of these 
variables as a direct estimate of acquisition costs for protected areas 
would miss much of the relevant variation. In Fig. 2, we plotted simpler 
bivariate associations between actual average cost per hectare of 
acquiring land for conservation (y-axis) per county against average 
urban (Fig. 2b) or agricultural (Fig. 2c) hectare value per county. Note 
the difference of scale between x and y axes on each graph: urban land 
value and agricultural land value greatly under-represent the magnitude 
of the variation in observed costs. Also, urban land value and agricul-
tural land value explain almost 4 times less variation in actual acquisi-
tion costs than does our model (comparing R2 values in Fig. 2b and c 
with those in Table 2). 

Fig. 3 maps the predicted land acquisition costs from our model, 
including extrapolating to counties where we did not observe trans-
actions (standard errors for these predictions are mapped in Fig. S.I.-6). 
As would be expected, predicted costs of acquiring protected areas tend 

to be higher in the North East, in coastal counties on the West Coast and 
Florida and around major conurbations in the interior U.S. (Chicago, 
Atlanta, Phoenix, etc.). In contrast, acquisition costs appear lower in 
rural counties in the interior of the U.S., particularly in the Great Plains 
(stretching from North Dakota and parts of Montana down into Texas 
and New Mexico), where admittedly, more extrapolation is involved. 
The model fit is highly significant (P-value < 0.0001) and it explains 59 
% of the overall variation in protected area costs that we observe. 

We used the prioritization framework from Armsworth et al. (2020) 
to illustrate how different cost data would affect conservation priorities. 
We compared the ROI offered by additional protection efforts in each 
county within the U.S., when using the two different cost datasets. The 
ROI estimates per county obtained with each cost dataset are positively 
correlated (R2 = 0.29, P ≪ 0.001, n = 1918, after log transforming and 
dropping 9 counties where the ROI is zero for both cost datasets because 
species in those counties are already fully protected, Fig. 4a). This 
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D. Le Bouille et al.                                                                                                                                                                                                                              



Biological Conservation 284 (2023) 110138

8

correlation indicates that when relying on either source of cost data, 
conservation planners would broadly agree on the relative ranking to 
attribute to individual counties. However, there are still important 
changes in those ranks: the prevalence of blue in Fig. 4c on the North- 
East and West coasts indicates that these counties would present lower 
ROI, and as a result be ranked lower for investment, when relying on our 
new cost data. As a result, priority would overall switch toward the 
Great Plains, whose counties tend to rank higher for investment with the 
new cost data. These broad patterns reflect the underlying cost gradient 
reported in our cost data (Fig. 3). 

Focusing more narrowly on only those counties offering the highest 
ROI with each cost dataset, we find that agreement levels over priorities 
depend on how many counties are being considered. Fig. 4b shows the 
percent overlap in counties that would appear priorities when focusing 
on the top 5, 10 or 15 % in terms of ROI with cost dataset. The more 
focused the spatial targeting with each dataset, the less they agree on 
priorities. Pushing further to compare optimal budget allocations that 
result, the two optimized recommendations disagree on where funding 
should be allocated Fig. 4b). If relying on the average agricultural land 
value data, the optimization recommends concentrating investment into 
Arizona (notably, Gila County) and New Mexico (Hidalgo County), 
marked with red points in Fig. 4a. When relying on our new cost esti-
mates, the optimal solution favors investment in Texas and coastal 
Louisiana (including the counties marked with blue points in Fig. 4a). It 
also favors a more dispersed investment strategy with 11 counties each 
receiving more than $30 M to enable large projects in the Gulf Prairie 
and Marshes, South Texas Plains, Edwards Plateau, and Trans Pecos 
ecoregions (Texas Parks and Wildlife Department, 2022). 

4. Discussion 

Ongoing losses of biodiversity and ecosystem services (Millennium 
Ecosystem Assessment, 2005; Pimm et al., 2014) and limited resources 
for conservation mean there is a pressing need to allocate what resources 
are available optimally (Le Saout et al., 2013; Waldron et al., 2013). This 
requires having a good understanding of how much conservation will 
cost in different places. However, conservation costs are often poorly 
documented. We examined what parameters drive acquisition costs of 
protected areas, used that knowledge to better predict protected area 
acquisition costs across the conterminous U.S. and then examined the 
consequences this would have on prioritization analyses. 

The model we present provides insight into some of the factors that 
consistently make some acquisitions more expensive than others. First, 
we hypothesized that social-economic factors usually associated with 
environmental philanthropy, in the form of monetary donations, could 
also be associated to land donations, partial or total, during land 
transactions for conservation. This would effectively result in decreased 
acquisition costs. However, our model finds the effect of those param-
eters is either not present or associations are different when considering 
land acquisitions. In particular, selling land at a lower cost is more 
common in less densely populated areas, with lower education levels 
and where unemployment remains low. In contrast monetary donations 
for conservation are concentrated in and around cities, which are often 
characterized by having higher education and unemployment levels 
(Chen et al., 2011; Greenspan et al., 2012). Second, we also found that a 
higher proportion of already converted land, as well as a higher threat of 
further conversion were both associated with higher land acquisition 
costs. Past and future land conversion trends can correlate with land 
trusts’ willingness to buy, pushing them to accept less favorable pricings 
(Boyd et al., 2015; Murdoch et al., 2007). Similarly, protected area ac-
quisitions cost per hectare was positively associated with the number of 
species listed as endangered by the IUCN. This increasing effect on land 
cost possibly indicates a greater willingness to pay for protected areas in 
these locations, by conservation organizations. The presence of species 
of interest might also offer leverage to landowners for driving prices up 
(Lennox and Armsworth, 2013) or act to reduce conservation 

organizations flexibility to seek out low cost parcels. Finally, higher 
density of already existing protected areas was associated with increased 
cost of securing new deals in that county. This might be a consequence of 
the lowest cost opportunities within a given county already having been 
protected. However, while the role of these covariates was consistent 
across our different spatial specifications, we found several associations 
were no longer significant when we only considered areas protected 
within the most recent decade, likely reflecting the smaller sample size 
involved. 

Market-based (agricultural or urban) land value are common proxies 
that have often been used as direct estimates of protected area acqui-
sition costs. While our model found urban land value to be positively 
associated with protected area acquisition costs, the predictive power of 
agricultural land value seems to have been almost completely picked up 
by the other covariates. In either case, we would caution against using 
either of those in isolation as proxy for land value, in the context of 
conservation. Protected area acquisition costs across the U.S. proved to 
be extremely variable and also highly skewed (see also Davies et al., 
2010). Capturing that high degree of variability is important when 
evaluating the potential efficacy of conservation programs. Schöttker 
et al. (2016), for example, found that more variation in land prices 
across the landscape would increase the efficiency of buying land, as 
opposed to contract easements. Yet, observed variation in the cost of 
land for conservation is under-represented when substituting agricul-
tural or urban land value for conservation land value (Fig. 2b and c). 

Using a prioritization framework, we further investigated how con-
servation recommendations could be affected by using our predicted 
costs versus using agricultural land value as a proxy for these costs. The 
conclusions one would draw about the sensitivity of priorities to the cost 
data used would depend on whether someone focused on only the best 
opportunities for conservation or on broad patterns in ROI across the 
country. In particular, the top sites and optimized budget allocation that 
emerged when using our new cost data are quite different to that ob-
tained when relying on agricultural land values to approximate costs. 
Different counties are prioritized and different sets of species would 
benefit. At the same time, agreement levels improve with less stringent 
targeting (Fig. 4b), something to be expected given the overall corre-
lation in ROI we find when considering all of the counties. Also, even if 
no longer optimal, counties picked by the optimization when assuming 
one cost dataset still offered a very good ROI when evaluated against the 
other cost dataset (e.g., colored points in Fig. 4a). Optimization tends to 
be more demanding about the underlying data, responding as it does to 
the upper tail of the ROI distribution only. In contrast, our correlation 
statistic summarizes patterns across all of the counties, most of which 
would not be in consideration for investment under an optimized 
strategy. This suggests that analyses considering policy interventions 
that would apply across many counties (e.g., large-scale payment pro-
grams to private landowners, Lubowski et al., 2006) may be less sensi-
tive to the underlying cost data used than those seeking to inform more 
concentrated conservation investments, like protected area acquisition 
programs. Other aspects of the optimal funding allocations and ROI 
distributions can be understood by considering the interaction of the 
cost datasets with the other relevant input variables. For example, that 
both optimized allocations favor southern counties reflects the lat-
itudinal gradient in species richness across the US, while the shift further 
from the East and West Coasts with the new cost data reflects the lon-
gitudinal pattern in costs in Fig. 3. 

In this study, we made choices and assumptions that should be kept 
in mind when interpreting our results. First, we conducted this analysis 
at the county level which we maintain is a relevant unit of aggregation 
for large-scale spatial planning. But we also recognize that fine-grain 
information is lost when doing so. Nolte (2020), for example, focuses 
on parcel-grain prediction. Sub-county variation of acquisition costs can 
translate into potential additional low-cost opportunities for conserva-
tion (Sutton and Armsworth, 2014). But we should note that such var-
iations would also be missed by using county averages of agricultural or 

D. Le Bouille et al.                                                                                                                                                                                                                              



Biological Conservation 284 (2023) 110138

9

urban land values, as has previously been done. Sub-county variation 
still play an important role in translating larger scale plans, as we 
addressed here, into local measures (Pressey et al., 2013) and there is a 
need to harness that potential in conservation planning (Gotway and 
Young, 2002; Holzkämper and Seppelt, 2007). 

Second, we have little information regarding acquisition costs for 
several states in the central U.S. For example, we only have ~75 land 
transactions or less for Kansas, North and South Dakota (Fig. 1). These 
tend to be states where land protection approaches other than fee 
ownership are more prevalent, particularly term contract agreements 
made as part of the U.S. Farm Bill’s Conservation Reserve Program 
(Farm Service Agency (USDA), 2019; Jackson et al., 2021). We favored a 
linear regression, as opposed to a more flexible regression structure such 
as that presented by Nolte (2020), in part out of concerns about possible 
errors that could result from highly nonlinear specifications when 
extrapolating costs to parts of the country where we have little to no 
data. 

Third, although our model explains roughly four times as much 
variation in acquisition costs as substituting agricultural land values did, 
it still leaves a non-negligible amount of variation unexplained. One 
reason the explanatory power of the model might be lower than it 
otherwise might be is because we chose to focus on how much it costs a 
conservation organization to protect land, instead of only focusing on 
predicting fair market value. Conservation organizations are often able 
to acquire properties for less than fair market values via a form of 
donation by the original landowner. In extremis, land may be fully 
donated, but partial donations where some cost is incurred but less than 
would be the case for a commercial buyer are also common. Factors 
affecting the tendency of private landowners to make such donations are 
also likely characterized by spatial variability and securing such dona-
tions may be easier for conservation organizations in some counties than 
others. To accommodate this in our model, we included covariates we 
hypothesized were associated with donation behavior alongside factors 
we hypothesized would be associated with setting fair market values. 
Our results however suggest we may not yet be predicting the donative 
component of conservation costs as well as we are aspects tied to fair 
market value. For example, Fig. 2a shows that full donations of land (in 
red) encompass the whole range of predicted values. Also, regression fits 
produced larger R2 values in a sensitivity test where we excluded fully 
donated parcels, which again only represent a fraction of the overall 
amount of donation activity that is going on (Table S.I.-6). Thus, a 
deeper investigation of when and how much landowners are willing to 
donate when selling for conservation, including both full donations and 
partial donations, would be warranted. 

Coomes et al. (2018) called for improved access to land cost data. 
They argue that such data should be a public good and is vital to the 
future of global change science and policy at large. Understanding and 
being able to predict the cost of land bought for conservation, in 
particular, are necessary conditions for the development of useful and 
reliable optimization tools. In the face of ever-increasing threats to 
biodiversity and the limited resources available to conservation orga-
nizations, such tools are urgently needed. With this work, we are 
providing a national map of protected area acquisition costs to empower 
national scale conservation planning exercises for the U.S., such as the 
30 × 30 initiative (Haaland et al., 2021) Beyond the U.S. context, our 
findings are also relevant to conservation researchers examining costs in 
other settings. For example, our results highlight the importance of 
focusing research effort directly on estimating the costs that conserva-
tion organizations face when implementing conservation actions, 
instead of on costs associated with other types of land use. Focusing on 
the costs faced by conservation organizations is important because the 
factors influencing costs they face may be different to those shaping 
costs with competing land uses. 
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